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INTRODUCTION

Shortly after the discovery of X-rays 1t became apparent
that there were possible harmful effects of these radlatlons.
Ever since then, shieldling against penetratling radiation has
been a matter of concern and study.

With the advent of nuclear chain reactors, this problem
of radiation shilelding was magnifled greatly. No longer was
sclence dealing with the relatively low source strengths of
radioactive materials, but now the Intensities of avallable
radioactlive sources were increased many times. Consequently,
larger and more effective shields had to be developed.

This 1ncreased importance of shleldling has been
responsible for extensive study of gamma radiation attenuation
during the past decade. The attenuation of gamma radiation
1s of prime importance because of 1ts characterlstic nature.
All types of radiation are present 1n the nuclear reactor;
but the charged particles, by virtue of the electric charge,
interact strongly with the atomic electrons of the matter
through which they pass, and very qulickly lose thelr energy.
Thus 1t 1s the neutral particles, such as neutrons and gamma
rays, that pose the major shlelding problem,

The studles of the attenuation of neutrons and of gamma
rays are very simlilar; however, in performing the calcula-
tions, the differing characteristlcs of each particle must

be taken into account. In particular, a rather consequential



difference between gamma ray and neutron problems lles in
the nature of the cross sections involved. Cross sectlons
for gamma ray processes are smooth functlons of both energy
and atomlc number. On the other hand, neutron cross sectlon
curves often exhibit resonance structure, 1n which both
total cross section and angular distributlons change drasti-
cally over narrow energy reglons. Another dissimilarity
between these two particles is due to the fact that the gamma
ray dose 1s nearly proportional to the energy flux whilile the
fast neutron dose is more nearly proportional to the number
flux. Goldstein (6) and Fano, Spencer and Berger (4)
consider further the detalls on the dilscrimination of these
two problems.

The obJective of thils thesis 1s involved with the
attenuation of gamma rays. Three methods have been exten-
sively employed in calculating the attenuation of gamma
radiation in matter. These are the method of successive
scattering, the method of moments and the method of random
sampling, more commonly called the Monte Carlo method.
cursory description of the Monte Carlo technique and of the
method of moments wlll be presented 1in thls thesis. The
method of successive scattering, however, will be presented
in some detail, since 1t 1s the technique employed 1n this
Investigation.

The method of successilive scattering has been successfully



applied to infinite-slab geometry by G. H. Peebles (13).

This investigation is concentrated upon finite spherical
geometry. DBecause of the inherent mathematlcal complications
of this geometry, only first order scatfering wlll be consi-
dered in this investigatlion. Number density ratios, as well
as energy density ratlos, of first order scattering to zero
order scattering wlll be calculated for various materlals,

source energies, and dimensions.



LITERATURE REVIEW AND DISCUSSION OF THEORY

It 1s beyond the scope of this investigatlon to present
an extended description of the varilous processes by which
gamma rays Ilnteract with matter, The subJect 1s treated in
detall in a number of standard references and the present
discussion 1s only an outline to supply a sultable background
for the investigation. Among the numerous references on
the fundamentals of gamma ray lnteraction processes are a
large number of papers, reports and books. The latter
include Segre (14), Friedlander and Kennedy (5), and Kaplan
(9); all of whom present a rather strailghtforward approach.
Other useful presentations have been given by Fano (3a,3b),
White (17), Bethe and Ashkin (1), Goldstein and Wilkins (7),
Goldstein (6), Snyder and Powell (15), and Davisson and
Evans (2). Although somewhat more difficult, the classic
reference for a baslc understanding of the fundamental
phenomena is the treatise by Heiltler (8). Each contains an
excellent presentation on gamma ray attenuation, covering

all aspects of the problem and including considerable data.
The Interactlons of Gamma Rays wilth Matter

Even upon restricting the energy range to the region of
interest, from 100 kev to 4 Mev, there 1s a large variety of
mechanisms by which photons can interact with matter. Table

1l lists these various modes of 1nteractlons 1ln order of



relative importance for attenuation calculations 1n this

energy range.

Table 1. Gamma ray lnteractlon processes

A, Primary
1. Photoelectiic effec¢t
2. Compton scattering
3. Pair Production
B. Secondary
4. Coherent (Rayleigh) Electron scattering
5 Annihilation radlation
6. Fluorescence radiation
T. Bremsstrahlung
8. Thomson scattering from the nucleus
9. Delbruck or Potential scattering
10. Multiple Bragg scattering
11. Nuclear interactions
a. photoeffects
b. scattering

12. Radlative corrections to lower order processes

The varlous secondary processes listed in Table 1 are
only of minute importance; therefore, no further discussion
concerning these processes wlll be presented. This is

particularly true in the energy range with which this



investigation 1s concerned. The three prlmary modes of
interactions listed in Table 1, however, contribute over-
whelmingly to the majority of photon interactlon 1n thls
energy range, thus it 1s felt that a brief explanation of
these modes should be presented.

Photoelectric effect

In the photoelectric effect, an incident photon transfers
all of its energy to one of the atomlic electrons which 1s
then ejected from the atom. The energy of the emitted
electron is equal to the incident photon energy less the
ionization energy of the electron. Thus, this mode of
interaction 1s characterized by the fact that 1t has a
threshold energy; l1l.e., it can occur only when the energy of
the incident photon 1s greater than the binding energy of
the electron. However, for photon energles very large in
comparison to the electron ionization energy, the photo-
electric effect becomes relatively unimportant. Since the
binding energy increases rapidly as Z increases, the photo-
electric effect becomes more promlnent for heavy elements.
Heitler (8) states that this cross section is proportional
to 25, while Goldstein (6) contends that it is between 74
and Z5. Thus for the heavier elements the photoelectric
effect predominates. In fact, for uranium 1t provides one-
half the total absorption coefficient for photon energies

up to 620 kev as indicated by Goldstein (6).



The important characteristic of this type of photon
interaction 1s that the photon i1s absorbed, and thus does
not contribute to the photon number density leaving the medium
in which the interaction takes place, This 1s an 1mportant
characteristic of this mode of interaction, and 1t will be
considered further in the 1lnvestigation.

Compton scattering

Whereas the photoelectric effect is an absorptive
process, the Compton effect does not result in the destruction
of the photon. Rather, the Compton effect is a scattering
process which alters the directlon and the energy of the
incident photon. This 1s the source of the major difficulty
in calculating gamma ray attenuation.

The Compton effect 1s the result of photons interacting
with essentlally free electrons. The photon collides with
the free electron resulting in a scattered photon whose
energy 1s equal to the energy of the incident photon less
the kinetic energy of the scattered free electron. Xaplan (9)
presents the standard treatment of Compton scattering and
covers the main features qulte adequately. This approach
ylelds the following relationship for the energy hy' of a
scattered photon in terms of the incident photon energy hy

and the angle of scattering g:

h\) ! = h\) . (

1 +-E¥—§(l-cosa)

m_c
o

’,_l
—




This relationship may be expressed 1n terms of wavelengths

since 3y = ¢. Thus

s
%T = A , (2)
h
1 + kmoc(l-coss)
or
a'm.c Am_c
ho - ho = 1l-cosg . (3)

These Compton relationships take particularly simple
form if the photon wavelength ) and the energy, hy = E, are
expressed in units of the Compton wavelength

h/myc = 0.02426 }
and the electron rest mass energy
m.cZ = 0.5110 Mev,
reSpectively. In these unlts, the relation between the
change in photon wavelength and the angle of scattering is
simply

A'-» = l-cosg. (4)

Expressed in terms of energy Equation 4 appears as

— )
il 1+E(1-cosg) ° (5)

In order to calculate the contribution of Compton
scattering to the attenuation of photons, it is necessary to
calculate the probability that such an occurrence will take

place. This probabllity was derived on the basis of



relativistic quantum mechanics by Klein and Nlshina and 1is
covered quite thoroughly by Lelpunskil, Novozhllov and
Sakharov (11). The Klein Nishina formula for the total

scattering cross sectlon per electron is

2 V= o, |
_2E- 2. 8E+QECE

(E)= mp2 B =28=2 1,(140E)+2 . (6)
e o3 E(142E)°

Besides the total cross section, 1t 1s also necessary
to know the differential cross section for scattering; i.e.,
the cross sectlion with respect to unit solid angle. This

is expressed by the formula of Kleln and Nishilna

dﬂ' —
' 1l _2/E'\2.E! E 1 1 1 L A8
O =3 TolE ) [E *+ Er +2(g - w)HE - E))
1 1
5(1+ § - §7 - cosg) , (7)

where ro is the classical electron radius

Py = 2.82 x 10'13 cm.

Equation 7 may also be expressed in terms of Compton wave-

lengths as
A M= W - _1)°
dcc =93 Po(xa) [Kl + ) +2(K l')+(l K') ]
5§(1+y-y'-cosg)df) . (8)

The Dirac delta function, g(l+y-3'-cosg), has been introduced
into Equation 8 in order to satisfy the condition expressed
by Equation 4.

In the preceding discusslon, it was shown that the
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cross section per atom varied as Z. From the above equations,
it can be seen that the total cross section is also dependent
upon the incident photon energy. Data given by Goldstein (6)
illustrate that Compton scattering predominates over the
energy range belng investigated. Even for an element as
heavy as uranium, the Compton effect forms the major part

of the total absorption coefficient from 0.6 to 5 Mev.

Palr production

In pailr production all the energy of the incident photon
is transformed into the creation of an electron pair, an
electron and a positron. The total kinetic energy of the
palr 1s equal to the energy of the incident photon less the
rest mass of the pair; 1l.e., twlce the rest mass of an
electron. Palr production, therefore, has a threshold energy
of 2m c® or 1.022 Mev. Goldstein (6) presents a brief
discussion of this phenomenon indicating the increasing
effect of 2 on the amount of pair production. For more
detalls on this process of photon interaction, reference
should be made to Kaplan (9), Leipunskii, Novozhilov and

Sakharov (11) and Fano, Spencer and Berger (4).
Gamma Ray Absorption Coefficients

Consider a beam of incident photons of flux density Io

passing through an absorber of thickness x. The number of

collisions made 1n a path length dx by photons passing in a
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unit time through a unit cross sectlonal area of the beam 1s
Iondx, where 5 1s the colllslion cross section and n 1s the
number of atoms per unlit volume. By substltuting the
absorptlion coefficlent _,, equal to ng, this value becomes
T,dx. If these colllslons are purely absorptive, thils
number of collislons must be exactly equal to the decrease
in the flux density I over the distance dx

-dI = I, dx, (9)

The solution to this differential equation is Lambert's law

I, = Texn(-ux). (10)

From the conslideratlons of the precedlng sectlon, the
total photon cross section to be used in attenuatlion calcu-
lations is given by the sum of the cross sections for the
photoelectric effect, Compton scattering and pair production:
+ 0o

op = 0 + o (11)

pe c po
Thls total cross sectlon is usually described as the mass
absorption coefficient ys a@nd 1s expressed in unlts of
cmg/gm. Numerous tables of absorption coefflcients are in
exlstence based 1n varying proportions on calculations and
measurements 1n narrow beam geometry. Probably the most
important of these are those compilled by Snyder and Powell
(15), Latter and Kahn (10) and G. R. White (17). The latter
1s the more recent and is believed to contaln values accurate

to wlithin two per cent. For the purpose of thils investiga-

tion total linear absorption coefficlents ,,

were used.
MT
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The data source employed for these various attenuation

coefficients is U,S. Atomic Energy Commission (16).
Methods of Calculating Gamma Ray Attenuation

The well known Boltzmann transport equation 1s satisfied
by the distribution function for gamma rays. The transport
equation 1s simply the balance of photons in six-dimensional
phase space (r, £, E). In the stationary case, the number
of photons in the element of phase space volume dV =
drd§QdE should remain constant. The most straight forward
approach to the derivation of the transport equation 1s to
consider the various processes by which photons enter and
leave the element of phase space volume dV.

First of all, 1t 1s necessary to consilder the migration
of quanta from an element of volume of ordinary space dr, due
to their motion. The flux through a unit area, the normal
of which lies in the direction of fi, 1s expressed by N(f,fi,
E)dfidE; thus the variation in the number ol photons in
unit time in the volume dV as a result of their free motion

has the form

div [QN(F, Q ,E)] ardQdE . (12)

Photons may disappear from this volume element of phase
space by absorptive interactions with matter. The loss of
photons in dV per unit time due to this process is

u(E)N(?, £ ,E)ardQdE , (13)
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where _,(E) i1s the linear absorption coefficient.

The volume element dr may contaln a source of photons
with energy E and directlon of motlon along;fi . Thus in the
equation of balance, a term must be introduced to take infto
account the photons born within the phase space volume
element in unit time from the source:

s(7,Q ,E)ard QdE , (14)

where S(r,Q ,E) 1s defined as the number of photons emitted
by the source in unit time in a unit volume around the point
determined by the radius vector r in a unit energy interval
around the energy E and 1n a unit solid angle around the
direction of fi.

Finally, photons from the phase space volume element
avr = dfdfi%ﬂ? may be scattered, by the Compton effect, into
the phase space volume element dV = dFd(QdE. The energy of
these photons changes from E' to E and the direction of
motion, from ﬁ' to fz This transition of photons from

dv' to 4V is expressed as

no(Q'-Q ,E'- E)AQ4EN(Y, Q',E')dQ'AE'dr’, (15)
where ¢( Q'-{] ,E'w E) 1s the differential cross section for
the transition of photons from the state (¥, (Q',E') to the
state (r, € ,E) and n, 1s the number of electrons in unit

volume. The total number of photons arriving at 4V as a

result of Compton scattering is thus
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n ardXLdE [ A Q' [ dB'6( Q-8B EN(F, Q',E" ). (16)
Yy E
In the statlionary state, the number of photons leaving
the volume element dV equals the number of photons enterilng
this volume element. Thus the sum of Equations 14 and 16

must equal the sum of Equations 12 and 13. Dividing all

terms by dV, one obtains the transport equation

aiv[ SIN(F, O ,E) ]+ u(E)N(F,Q ,E)
=ng [ af' [ aE'o(Q'-T ,E'~ EN(F, STLE')
Y E
+ 5(r, Q,E) . (17)

Equation 17 i1s the most general form of the Boltzmann
transport equation for photons. Further modifications in
the form of the equation depend upon the source and medium
geometry. Leipunskii, Novozhilov and Sakharov (11) investi-
gate a variety of source types and scattering medium
geometries.

A direct solution to the integro-differential transport
equation has been under severe investigation for the past
three decades; however, no '"quick and dirty" method of
solving this equation has been found as of yet.

A direct numerlcal integration of the time independent
Boltzmann transport equation has been attempted; however,

1t requires integration over at least six variables
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(e.g., T,E, Q) and threatens to tax the capabllities even of
the largest electronic computers. However, in the course of
much investigation, three numerical techniques have been
developed which approximate solutions to the transport
equation. These techniques are the method of moments, the
Monte Carlo method and the method of successive scattering.
The highlights of the method of moments and of the Monte
Carlo method will be discussed only briefly since they are
not involved in this investigation. For further detalls, one
should refer to Leipunskii, Novozhilov and Sakharov (11),
Fano, Spencer and Berger (4) and Goldstein (6).

The method of moments

Most of the theoretical results for multiple scattering
of photons have been obtained by employing the method of
moments to generate a numerical solution to the {ransport
equation. The principal results of the calculations are
given by Goldstein and Wilkins (7).

It should be noted that this numerical technique
employed for the solution of the transport equation is
applicable only to infinife homogeneous media and simple
types of geometry for the source.

Essentlally, the method of moments is based on the fact
that the integro-differential transport equation for the
gamma ray distrlbution function may be transformed into a

system of coupled integral equations for the space-angle
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moments of the distribution function. A numerical solutilon
of the system of equatlions can be obtained with the ald of
an electronic computer and the moments so derived are used
to reconstruét the gamma ray distribution function.

The Monte Carlo method

Unlike the method of moments, the Monte Carlo method may
be applied to problems with any kind of geometry, including
cases of propogation of photons through finite media. For
this reason, the main results of the determination of the
transmission coefficlents of photons through slabs and the
reflexion coefficients (albedo) from various media have been
obtained by this particular method.

The essence of the Monte Carlo method lies in the fact
that the complex statistical process of the transmission of
a photon through matter may be considered as a succession of
a finite number of random elementary processes (e.g., free
motion over a certain path, disappearance through pailr pro-
duction or photoelectric effect, Compton scattering in a
definite direction, etec.). If the probability of each of
these occurrences 1s determined and a list of random numbers
1s available, the trajectory of a particular photon in the
medium under investigation may be reproduced step by step.
On reaching the stage at which the photon disappears or is
transferred to a state in which one is interested (e.g., the

photon crosses the boundary of the scattering medium) the
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trajectory of the next photon 1s investigated. If a suffi-
ciently large number of photon trajectories are investigated
in this manner, a photon dlstribution functlon according to
energy, angle or some other variable may be finally obtalned.
The difficulties arising from the Monte Carlo applica-
tion to the solution of the Boltzmann transport equation lle
in the expressions given for probable errors. To minimize
the probable error, one must generate an extremely large
number of photon trajectories. Goldstein (6) states that for

6

penetrations of 10 -, the starting sample of photon trajec-
tories would have to be of order of 108 to 109, requiring
many hours of computer time. To resolve this dilemma,
different types of artificial methods have been worked out by
which the number of trajectories may be reduced without
increasing the probable error.

Although the Monte Carlo method involves large amounts
of computer time, i1its value 1s nevertheless without question.
In particular, 1t seems to be one of the few practlical means
known for solving problems involving multiple layers, the

present outstanding gap in shielding theory.

The method of successive scattering

The method of successive scattering has been success-
fully applied to the case of infinite slab geometry by
Peebles (13). The principle involved is relatively simple

and will be described in detail.
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The probability that a photon will be transmitted
through a slab of finite thickness but infinite extent 1s
the sum of the probablllitlies that it will be transmltted with
no scattering, wlth one scattering, wlth two scattering,
etec. Generally, the first few scatterlings are sufficlent for
accurate determinations of total transmission if the slab in
question is thin; however, 1f the slab 1s thick, an excessive
number of scatterings 1s required for great accuracy.

The probability that a photon will be transmitted through
a slab with exactly k collisions may be expressed as the
product of four probabilities: (1) exp(-uoa), the probability
that the photon will travel a distance a in the material
without interaction, where Mo is the total linear absorption
coefficilent of the source energy; (2) uoda, the probability
that an interaction will take place in da at a; (3) pdg/uo,
the probability that the photon will survive that collision
and scatter into a new path, where , is the electron density
and dg 1s the Klein Nishina differential cross section per

electron; and (4) N the probability that the photon will

k-1"
continue through the slab suffering exactly k-1 collisions
before its emergence from the slab. Thus, for small values
of k, one can write

where Nk 1s defined as the probability that the photon will

be transmitted through the slab with exactly k collisions.
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The dlagram 1llustrated in Figure 1 serves to clarify the
derivation of this equatlon.

The probability that a photon will be transmitted
without suffering an interaction 1is

Ng = exp(—X/Yo), (19)

where X is the slab thickness in mean free paths (calculated
at the incident energy) and s is the cosine of the angle
between the normal to the slab and the incident path.
Equation 19, in conjunction with Equation 18, yields Nl’ the
probability that the photon suffers exactly one collision

as it is transmitted through the slab. Iteration of this
technique yields values for N2, N3, Nq, ete. Obvliously,
this technlque involves a considerable amount of work,

since at each step, N must be known for a sufficlently

k-1
wide range of three parameters--slab thickness, incident
energy and incident angle. However, the considerable amount
of generated information justifies the large amount of time
involved in using this numerical technique.

The application of similar arguments may be employed
to generate values for Ek’ the expected energy transmitted
in the beam after exactly k collisions. The equation for

Ek 1s very similar to that for N in particular

k.’
dEK = exp(-uoa)-uoda'pdg/uo-Ek_l . (20)
Peebles (13) has generated much data employing this

technique. He has calculated values of Nk/No and Ek/EO for
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Figure 1. A diagram showing the probabillities associated with
the transmission of a photon and clarifying the
derivation of Egquation 18.

Nk_ probability of transmission
with exactly k scattering

X = thickness of slab in mean
free paths

[z~ ! I l I
5 6 7 8 9 10 11 12
Number of collisions, k
Figure 2, Graphical representation of the calculated and
estimated behavior of Ny /N, with resBect to k in
the case of a photon of energy 5 m,c< normally
incident on a lead slab.
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infinite lead and iron slabs of varlous thicknesses and for
various source strengths and incident path angles. Although
this investigation is llmited to first order scattering only,
Peebles has performed calculations for first, second and
third order scatterings. His results have been reproduced

in a graphical manner in Figure 2.
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FIRST ORDER SUCCESSIVE SCATTERING METHOD

APPLIED TO SPHERICAL GEOMETRY

The equations generated by the application of the
successive scattering technique take different forms for
different properties of the system. Thus before attempting
to derive the necessary equations for atfenuation calcula-
tions, the physlcal properties of the system must be defined.

This 1lnvestigation is concerned with the derivation of
formulas ylelding N1 and El for a monoenergetic, isotropic

point source in finlte spherical geometry. Only first order

scattering will be considered.
Probablilities Expressed in Spherical Geometry

In an analogous manner to Peebles' treatment of the
infinite slab case, the derivation of le and dEl will result
from the product of four probabilities. Figure 3 serves to
define the variables involved in this problem as well as
fo indicate a typical path of a first order scattered photon.

The probability P, that a photon emltted from tThe source
wlll travel a distance a before interacting in the sphere is

exp(—uoa)azsined9d¢

P, = . 2
L ll--rra.2 ( )

P2 is defined as the probability that the photon will suffer
a collision in da at a distance a from the source. The form

of this probabllity i1s
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Filgure 3. The path of a photon suffering a scattering

collision at a and scattered by angle g.
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P, = p,da . (22)

The probability P3 that the photon survives the collision

and 1s scattered into a scattering angle g 1s expressed as

P3 = pdc/uo 3 (23)

where o 1s the electron density and do 1s the Kleln Nishina

differential cross section. From Equation 8

22 (1) + 25 4 200y )+ (31 1) 216 (1421 ~cos)aQ,
(24)

mh~

do=

>

where d{) is an element of unit solid angle. For simplifica-

tion, »(x,)') i1s defined as

abian?) =3 2 (-l—)%i—, #32 2l-yt Je=x )% (25)
2 )
thus P3 becomes

ox(xsn' )6 (14 -y ' -cosg)day )
3" ™ . (26)

Finally, the probability that the photon will continue

from the point of collision to the surface of the sphere is

Py = exp(-up) (27)

where M 1s the attenuation coefficient of the scattered
photon, and b is the distance from the point of scattering
to the surface of the sphere.

The product of Pl’ P2, P3, and P& yields the desired

expressions for le
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exp(—uoa)azsined5d¢ on(nsn')a(l+y-3'-cosg)dsl
Urra, HE
- exp(- b) . (28)

Integration of thils equation ylelds the followlng expression

for Nl:
em R exp(—uoa)sine
Ny= [ afL [ do [ d8 [ da [ yipe “on(rsnt)
total 0 0 0
solid
angle §(1+r-1"'-cosg)* exp(-yb)]. (29)

The variable ¢, by nature of the geometry of the problem, may

be eliminated by 1lntegrating directly over ¢; thus

m R )
N1= j‘ dﬂ "1 da ‘,r da[% exp(-uoa)-px(;\,;\x )6(1+X-XI'COSS)

total 0 0
solid
angle rexp(-yb)7 . (30)

The variable g may be eliminated by considering Figure 3 and

employing the sine law. Thus

be g (31)
and

g o= arcsin[% sin(m-g)] = arcsinﬂ% singq; (32)
therefore,

g =g - arcsin[% singj . (33)

The relatlonship between dg and dg is not quite as easily
acquired; however, an investigation of Figure 4 will help

clarify the problem. From the definition of the sine of an
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Figure 4.

\

do

0

N R

The relationship between dg and dg.

_dg

9c
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angle, the following relationship 1is derived:

g%% = sin(3 -g) = cosg , (34)
or
dg = 5 cosg de . (35)

Differentiation of Equatlon 31 ylelds

de = 88 g 28 dr =dg - d (36)
> B + v g B g

since 38/33 and -38/3f equal one. Thus
de = dg - % cospg dg , (37)

or, after appropriate simpliflicatlons have been performed

s =298 (38)

~ b+a cosg

Now consider the variablezi . As 1s seen 1n Figure 5,

2 ™
J aq =T ayp' [ singag . (39)
total 0 0
solid
_angle

As 1n the treatment of the ¢ varlable, ¢' may be directly

integrated because of the symmetry of the problem. Thus

™
f afl = 2~ f singdg . (40)
total 0
solld
angle

Consider at this point the Compton relationship between the
scattered photon wavelength A' and the angle of scattering

g, expressed by Equation 4. By differentiating thils equation,
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N

Flgure 5,

\
[T

The relationshlp between df) and Ai'.
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one obtains
dy' = singdg . (41)

The substitution of Equation 41 into Equation 40 yields a

relationship between d{L and &)'; in particular,

5 k2
j‘ af =2njdx', (42)
total %
solid
angle

where the limits of integration over the ;' variable have been
derived from Equation 4,

The substitution of Equations 42, 38 and 33 into Equation
30 yields the following expression for le

A +2 T R
. 8 ..
Ny= [ax' [dg | dalq exp(—uoa)-sin{g-arcsin(ﬁ sing)}
% 0 0]

-pn(l,l')5(1+k—K'-COSg)- exp(—ub)- E:EEESEEW' (43)

As Equation 43 indicates, N1 1s expressed in tferms of four
variables--a, b, A', and B. The variable b may be eliminated

quite easily by application of the slne law; l.e.,

b R "
sin g = sin(m-g) (44)

The substitution of Equatlon 33 into Equation 44 and simpli-
fication of the resulting equation yields the following
relationshlip between b, a and g:

b = R[cos{arcsin@% sing)} - % cosg] . (45)
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Now consider the variable g and the Dirac delta function

s(1+A-At-cosg). If a function f(x,y,z) exlsts such that

£(x,y,2) = [ax [ dy [ dz {g(x,y,2)s(n(x,¥,2)]1} (40)

then an equlvalent expression for f(x,y,z) is

r(x,y,2) = [ dx [ dy {—lgw‘gz—ll} ; (47)

where g(x,v,z) and ah/3z are evaluated at z such that h(x,y,z)
equals zero. The application of this property of the Dirac
delta function to Equation 43 results in the elimination of

the g variable. The form of the function h in Equation 43 1is

h(y',8) = 1+A-A'-cosg (48)
thus

dh/3g = sing, (49)
and setting Equation 48 equal to zero yields

g = arccos(3+1-y"'). (50)

The application of the Dirac delta function property
and the substitution of Equation 45 into Equation 43 yield
an expresslon for N1 in terms of only two variables, a and °'.

In particular, the equation for Nl is

A+2 R
Ni= [ dy'[ da ™ exp(—uoa)'sin[s—arcsin(%sina)]-pu(l,xf)-
% 0

-sing a)-2cosa]

R
ng) J/s1
(

n B R[cos(arcsin(
exp[-yR(cos(arcsin(gsing))- geosg)].

E ]

R[cos(arcsin(ss

:ﬂm 5] [

ing|
1)

UIUJ
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where g = arcos(l+y-3'). Simplificatlon of Equation 51

yilelds
)\-1-2 R
= [ dy'[ da m exp —(u a+“R[c0o(arcsin(—sinB)) rcosBJ)
N O
- a 2
{cos[ar081n6§51n5)]— —cosg]
'DK(}\:?\I)' P) (52)

cos{arcsin(351n5)}

where g = arcos(l+y-3').

E1 equals the product of the energy of the scattered
photon E' and the number density Nl of the scattered photon.
Since the units employed are the Compton unit of wavelength

and the electron rest mass energy unit of energy, E' is

the reciprocal of »'. Thus the form of E, 1s
;\+2 R ~
cl
= oy f da-%—exp -(u a+uR[cos(arcsin(R51ng))—-ﬁcosBj)
A 0]
{cos[arcsin( sing) ]- ;cos }

“onlasn')- (53)

cos{ar081n(R51ng)}

Numerical Integration

The analytical integration of Equations 52 and 53 would
prove to be extremely difficult if not impossible. Therefore,
for the purpose of this investigation, a numerical integration
technique was employed. In particular recourse was made to
Simpson's rule treated quite adequately by Wylile (18).

Simpson's rule for a single integral equation may be
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expressed as

X
J+2 i
£ axe (x) =-§5 [£y + 450 + Tiu0] 5 (54)
J
where fj = f(xj), fj+l= f(xj+l) and fJ+2 = f(xj+2), and h

is the distance between two adjacent points on the x-axis.
In the case of a double integral equation, Simpson's rule

is applied over both variables; i.e.,

Xi+2 Ti4o Xy
[ax [ ay £(x,y) = i 5 [fy + 4t Ti0lls
B Y% J
or
X542 Yk+2 -
.
i dx f dy £ix,5) 3 {fk,3+ufk,j+l+fk,j+2+4fk+l,j
i Yk
168y 0, 341t e, g2 Tiee, 37 k42, 341 K42, g2

(55)
A better comprehension of fthe numerical integration technique
employed is acquired by considering Figure 6.
Generally speaking, the smaller the values of hx and

h the greater the accuracy of the approximation. However,

v
when applylng this technlque, one must consider the amount
of computer time required as well as the accuracy desired.
If one is integrating over a relatively large region; i.e.,
the grid contalns a large number of points, and the

numerical solution indicates signs of convergence, one may

adopt a criterion for the selectlion of the values of hx and
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Figure 6. Simpson's rule applied to double integration.
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Pigure 7.

Iterated double integration Simpson's rule.
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hy by considering the trend of convergence. For lnstance,
the value of hx may be halved repeatedly until 1t appears
that the solution has converged and that further halving
of hx contributes a negligible amount to the solutilon.
Once thils has been done for hx’ the procedure is then
repeated for hy.
Should the range of integration be such as to include
more than three points along each of the variable axes,

Simpson's rule 1s merely repeated in the following manner

S Yn

I dx Indy f(x,y) = I dx r dy f( f5dx [ dy f(x,y)+
1 N 1 N Y1
In
+ [ dx [dy £(xy) , (56)
n-2 91
and
fn ¥ = R = y
[ ax Indy f(x,y)= [ ax I3dy £(x,y) + r3dx rsdy £{x,7) Fess
X1 ¥ By s
*3 In o T *5 Y5
+ [ dx [oay f(x,y) + [ ax [ ay f(x,y) + [ ax[ dyf(x,y)+
4 In-2 X3 N X3 Y3
X5 ¥y Xy Y3
veot [ ax[ dy £(%X,¥) +e..+ [ dx[ ay Pilx,%)
x3 Yn-2 .z ¥1
*n y5 *n In
£ f dx [ dy £(x,y)+...+ [ dx[ ay £(x,y). (57)
b j

n-2 y3 R yn_2
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The application of Simpson's rule to each of the double

integral terms on the right hand side of Equatlon 57 then

yields
o [ J X
- n_h N
[ ax[ dy f(x,y)=—§-z £, 1+ L Z
- &_ * J=3,5,T5+... k=3,5,T7,...
1 1
J-1 Kz—l
[2(f, -+f )+4E +
( k,17°1,3 K, J j=2,4,6,... k=2,4,6,...
>3
GL(f, ,+f, -)+16f, .7+ 8ty
[4(fy 4+ T EAN - N Sy I SRR P
7 J-1
. Z{ EE 8f, (58)
k=3:5171 J=2’4’6" -

The application of this numerical technique to Nl and
El resulted in the grid illustrated in Figure 7. It was
decided that the criterion for the most appropriate choice
of values for hk' and ha should be that the change in the
numerical solution for N1 for any value of ha and hk‘ be
less than one per cent of the value of N1 calculated for the
preceding values of ha and hl"

The initial value of ha was defined as the radius of
the sphere in mean free paths divided by 40.0. This choice
of ha was completely arbltrary but as further investigation
showed this was a proper cholce since further division of h

a

was entlrely unnecessary. The value of h however,

A’
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created somewhat of a problem. It was intultively obvious
that the contribution of backscattering to N1 would be
almost negligible. Also, 1t was expected that the major
contribution to N1 would result from scattering angles of
the order of zero degrees. Thus, the value of hk' should
be quite small in the neighborhood of g = 0, but for gz
greater than 90 degrees, a somewhat larger value of hl'
would be more appropriate. It was therefore decided that
the grid should be split in half and the funection be
evaluated at each point in the upper half of the grid.
Then, the lower half of the grid was fo be halved again and
the function evaluated at each point in the upper half of
this portion of the grid. This subdivision process was to
be continued untlil convergence to wilthin one per cent was
achieved. After a few tests for convergence, it was found
that this subdivision process along the 3 ' variable had to
be repeated ten times.

The computer program

A computer program was compiled for the purpose of
solving Equations 52 and 53 by means of the iterated
Simpson's rule, Equation 58. The program was written in
such a way that solutions for Nl and El could be calculated
for a varlety of cases. This investigation was concerned
with four different scattering media; namely, water, iron,

lead and uranium. For each of these media, Nl and El were
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calculated for a varilety of spherical radii, ranging from
1 to 20 mean free paths, and a variety of incident photon
energies ranging from 1 to 8 mocg.

Coupled to the main program is a Lagrange's 1nterpola-
tion subroutine. Wiley (18) presents a rather extensive
discussion on Lagrange's interpolation formula and reference
should be made to his work for further detail. The purpose
of the subroutine is to calculate the value of the attenua-
tion coefficlent | for the scattered photon. The subroutine
is supplied with pairs of data points as shown in Table 6.
All data supplied to the subroutine were taken from U.S.
Atomic Energy Commission (16).

It 1is generally more instructive to calculate number
density ratios, Nl/No and energy density ratios El/Eo’ where
NO and EO refer to non-scattered photons. Thus the program
was composed so as to generate these ratios as well as N1 and

E The results of these calculations have been tabulated

lt
and are presented in Tables 2 through 5.



Table 2, First order scattering attenuation calculations for H,O

hoedy "ty M L T \
(x10°)
1.0 1.0 5.64(1073) 3.68(10°1) 15.3 3.48(1073) 3.68(10
3.0 1.24(1073) 4.98(10°2) 25.0 8.63(10"%) 4.98(10
5.0 1.86(10°%) 6.74(1073)  27.6 1.38(107%) 6.74(10
8.0 9.#4(10'6) 3.35(10‘4) 28.1 7.51(10‘6) 3.35(10
12.0  1.69(10°7) 6.14(10°%)  27.5 1.42(10°7) 6.14(10
16.0  3.00(1079) 1.12(10°7)  26.7 2.60(1079) 1.12(1077
20.0  5.33(00°'1) 2.06(107%)  25.9 4.72(1071) =2.06(107°
2.0 1.0 3.35(1073) 3.68(1071) 9.12 3.45(1073) 7.36(10 i,
3.0 6.42(10°%) 4.98(10°) 12.9 8.13(10°%) 9.96(10 8,
5.0 9.17(107°) 6.74(1073)  13.6 1.29(107%) 1.35(10 9.
8.0 a.62(1o“6) 3.35(10’“) 13.8 7.01(107) 6.71(10
12.0 8.35(10'7) 6.14(10‘6) 13.6 1.35(10’7) 1.23(10
16.0 1.50(1077) 1.12(10°7) 13.3 2.51(10°9) 2.25(10
20.0  2.67(107) 2.06(10°%)  13.0 4.60(207*1) 4.12(10

gt



Table 2 (Continued)

?;ogg§ Ragigs N1 No Nl/NO Ey Eq El/EO
(x10”3) (x1073)
4.0 1.0 1.68(10735) 3.68(10°1)  4.57 2.97(1073) 1..47 2,02
3.0  2.84(10°") 14.98(10°2)  5.70 6.70(10°%1) 1.99(107})  3.36
5.0  3.92(107°) 6.74(1073)  5.82 1.04(10™7%) 2.70(107%)  3.87
8.0 1.92(10'6) 3.35(107 ) 5.71  5.60(107°) 1.34(1073) 4,17
12,0 3.35(20°8) 6.14(10°%)  s5.46 1.08(10°7) 2.46(107°) 4.25
16.0  5.84(10719) 1.12(1077)  5.19 1.89(1079) 4.50(2077) 4.20
20.0  1.02(107"'1) 2.06(1079)  4.95 3.39(10711) 8.24(1077) 4.11
8.0 1.0 7.60(00°%) 3.68(10°1)  2.07 2.36(1073) 2.9l .802
3.0 1.16(10'4) 4.98(10'2) 2.34 5.09(10“”) 3.98(10“1) 1.28
5.0  1.54(1072) 6.74(1073)  2.29 7.62(107°) 5.39(107%) 1.4
8.0 7.06(00°7) 3.35(10°%)  2.10 3.80(10°°) 2.68(1073) 1.4
12.0 1.12(10“8) 6.14(10“6) 1.82 6.36(10“8) 4.92(10‘5) 1.29
16.0  1.75(1071%) 1.12(2077)  1.56 1.03(1077) 9.00(1077) 1.15
20.0  2.76(10°%2) 2.06(1079)  1.3% 1.68(10711) 1.65(10°8) 1.02

6€




Table 3. First order scattering attenuation calculations for Fe

Energy Radius N N N. /N E
(m002) (mfp) . ° (xio—g) !
1.0 1.0  3.14(10°%) 3.68(1071)  8.53 1.92(10°%) 3.68(10"
3.0  6.17(1073) 4.98(107°) 12.4  4.37(1073) 4.98(10
5.0  8.93(107%) 6.74(103) 13.3  6.83(10°%) 6.74(10 ,
8.0 4.50(107°) 3.35(10'4) i3, 3.66(107°) 3.35(10 .9
12.0  8.04(107) 6.14(10°%) 13.1  6.87(10°7) 6.14(10 2
16.0 1.42(10°%) 1.12(10°7) 12.7  1.25(1078) 1.12(1077 1
20.0  2.52(1071°) 2.06(1079) 12.2  2.26(1071°) 2.06(107° .9
2.0 1.0 1.91(107%) 3.68(107Y1)  5.18 1.95(1072) 7.36(10 2,
3.0  3.40(1073) 4.98(107%)  6.83 4.36(107°) 9.96(10 4.
5.0 4750107 6.74(1073)  7.04  6.75(107%) 1.3 5.
8.0 2.33(0072) 3.35(10°%)  6.94 3.59(107°) 6.71(10 5.
12,0 4.08(00°7) 6.14(10°%)  6.64 6.68(10°7) 1.23(10 5.
16.0 7.12(1009) 1.12(107)  6.32  1.21(10°°) 2.25 5,
20.0  1.24(10719) 2.06(10°9)  6.03 2.16(1071°) 4.12 5.

Ot



Table 3 (Continued)

Energy Radius N1 N0 Nl/NO E1 EO El/EO
(mocg) (mfp) (x10”2) (x1072)
4.0 1.0 1.01(107°) 3.68(1071)  2.76 1.77(107°) 1.47 1.20
3.0  1.69(1073) 4,98(107°)  3.40 3.98(1073) 1.99(1071) 2.00

5.0  2.34(10°7%) 6.74(1073)  3.48 6.25(107") 2.70(1072) 2.32

8.0 1.16(107°) 3.35(10‘“) 3.44  3.39(107°) 1.34(1073) 2.53

12,0 2.05(10°7) 6.14(107%)  3.33 6.43(10°7) 2.46(2070) 2.61

16.0 3.61(10772) 1.12(1077) 3.21  1.18(107°) 4.50(10°7) 2.62

20,0  6.37(10711) 2.06(10°9)  3.09 2.14(10710) 8.24(1079) 2.60
8.0 1.0 5.48(1073) 3.68(107Y) 1.49 1.59(107°) 2.94 .539
3.0  9.30(107") 4.98(107%)  1.87 3.84(10°3) 3.98(107%) .965

5.0  1.33(2071) 6.74(2073)  1.97 6.29(1071) 5.39(107°)  1.17

8.0 6.68(10°°) 3.35(10°%) 1.99 3.51(107°) 2.68(1073) 1.31

12.0 1.18(1o'f) 6.14(10“6) 1.92  6.67(10°7) 4.92(10"5) 1,36

16.0  2.04(10-9) 1.12(10°7)  1.81 1.20(10°°) 9.00(10°7) 1.33

20.0  3.47(10°11) 2.06(1079)  1.68 2.11(10°%9) 1.65(10°%) 1.28

T



Table 4. First order scattering attenuation calculations for Pb

Energy Radius N, Ng N,/Ng E, Eq Ey/E,
(mye®)  (mfp) (x1072) (x1072)
1.0 1.0 1.40(107%) 3.68(1071)  3.81 1.01(107°) 3.68(1071) 2.76
3.0  2.18(1073) 4.98(107%)  4.38 1.82(1073) 4.98(107°) 3.66
5.0  3.04(100") 6.74(20°3)  4.52  2.66(10°%) 6.74(1073)  3.95
8.0 1.52(1072) 3.35(10°%)  4.54  1.38(1070) 3.35(10°0)  4.10
12.0  2.74(10°7) 6.14(10°%) a7 2.5400077) 6.14(10°0)  4.13
16.0 M.93(10"9) 1.12(10“7) 4,38 4.63(10'9) 1.12(10 7) 4,12
20.0  8.90(10°11) 2.06(1079)  4.32  8.44(107'Y) 2.06(1077)  4.09
2.0 1.0 1.05(10°2) 3.68(10°1)  2.85 1.36(107°) 7.36(107%) 1.84
3.0  1.88(1073) 4.98(1072)  3.78 2.84(1073) 9.96(107°) 2.85
5.0 2.67(10°") 6.74(1073) 3.97  4.30(10°") 1.35(1072)  3.19
8.0 1.32(1072)  3.35(107 1) 3.94 2.23(107°) 6.71(10'A) %:33
12.0 2.32(10“7) 6.14(10'6) 3.77 4.06(10’7) 1.23(10 ) 3.31
16.0  4.04(2077) 1.12(1077)  3.59 7.23(1077) 2.25(1077) 3.21
20.0  7.04(10711) 2.06(107%)  3.41  1.28(10710) 4.12(1077)  3.11

chr



Table 4 (Continued)

Energy Radius N N N, /N E E E./E
(mye®) (o) 1 O (xio—g) : ) (xio"g)
4.0 1.0 7.74(1073) 3.68(1071)  2.10 1.64(107%) 1.47 1.12
3.0  1.53(1073) 4.98(107°)  3.08 4.01(1073) 1.99(1071) =2.01
5.0  2.34(207%) 6.74(1073)  3.48  6.65(1077) 2.70(1072) 2.47
8.0 1.26(10'5) 3.35(10”4) 3.74 3.80(10“5) 1.34(207°) 2.83
12.0  2.35(1077) 6.14(107%)  3.83 7.47(2077) 2.46(107°) 3.04
16.0  4.26(1079) 1.12(10°7)  3.79 1.40(1078) 4.50(10°7) 3.10
20.0  T7.61(2071') 2.06(107%)  3.69 2.55(1071°) 8.24(2077) 3.09
8.0 1.0 5.79(1073) 3.68(1071)  1.57 1.84(107°) 2.94 624
3.0 1.37(1073) 4.98(107°)  2.74 5.46(1073) 3.98(107%1) 1.37
5.0 2.39(10°%) 6.74(1073)  3.55 1.04(1073) 5.39(107°) 1.93
8.0 1.54(10“5) 3.35(1077) 4,60 7 17(10‘5) 2.68(10“3) 2,67
12,0 3.70(10°7) 6.14(10°%)  6.02 1.80(10°°) u4.92(107%) 3.66
16.0 8.64(10“9) 1.12(10 7) 7.68 4 30(10’8) 9 00(10"7) 4,77
20.0  2.00(10°1%) 2.06(109)  9.69 1.01(10°?) 1.65(10°°) 6.11

Ef



Table 5. First order scattering attenuation calculations for U

Energy Radius Nl NO Nl/NO El
(mocg) (mfp) (xlo-ﬁ’)
4.0 1.0 1.06(10°°) 3.68(107%) 2.89 2.32(107°) 1. 1,
3.0  2.07(1073) 4.98(10°°%)  4.16 5.55(10°3) 1. 2,
5.0 3.15(10‘u) 6.74(10"3) L,67 9.10(10‘4) 2, 3.
8.0 1.67(107°) 3.35(10"4) k.97 5.12(107°) 1. 3.
12.0  3.08(10°7) 6.14(10°%)  s5.01 9.89(10°7) 2. i,
6.0  5.49(1079) 1.12(2077)  4.88 1.82(10°°) 4. I,
20,0  9.66(10°11) 2.06(1079)  4.68 3.27(107%9) 8. 3.
4.5 1.0 1.03(1079) 3.68(107Y1)  2.81 2.44(107%) 1. 1.
3.0 2.13(1073) 4.98(107%) 4.28 6.22(1073) 2. 2.
5.0  3.40(107%) 6.74(1073)  s5.05 1.08(1073) 3. 3.
8.0 1.94(1079) 3.35(10°%)  5.80 6.64(107°) 1. i,
12,0 4.05(10°7) 6.14(10°%)  6.59 1.47(107%) 2. 5.
16.0 8.39(10-9) 1.12(10”7) 7.46  3.18(10 8) 5. 6.
20.0  1.76(1071°) 2.06(1079)  8.56 6.90(1071°) o. 7.

Tty



Table 5 (Continued)

.98

Ener%y Radius Ny NO Nl/NO E1 E0 El/EO
(moc ) (mfp) (xlO—Q) (x10
5.0 1.0  1.00(10°%) 3.68(1071)  2.73 2.53(1072) 1.84 1.38
3.0  2.18(1073) 4.98(10°9)  4.38 6.91(10735) 2.49(1071) 2.78
5.0 3.69(10°%) 6.74(1073)  5.48 1.29(20°3) 13.37(1072) 3.81
8.0 2.35(1072) 3.35(10°%)  7.00 8.92(107°) 1.68(1073) 5.302
12.0  5.87(20°7) 6.14(10°%)  9.s55 2.40(107%) 3.07(1072) 7.8
16.0 1.52(10‘8) 1.12(2077) 1.35 6.53(10'8) 5.63(1077) 11.6
20.0  4.08(1071°) 2.06(10°9)  1.98 1.81(1079) 1.03(107%) 17.6
5.5 1.0 9.69(1073) 3.68(1071) 2.63 2.60(107°) 2.02 1.29
3.0 2.20(1073) 4.98(1072) y.41 7.49(1073) 2.74(107t)  2.74
5.0 3.89(10’“) 6.74(10"3) 5.77 1.47(107°) 3.71(10‘2) 3.97
8.0 2.68(10‘5) 3.35(10'4) 7.99 1.11(10 ) 1.84(10”3) 6.04
12.0  7.54(10°7) 6.14(10°%)  1.23  3.37(20°%) 3.38(10%) 9
16.0  2.18(10°%) 1.12(10°7)  1.94 1.02(2077) 6.19(1077) 1.6
20.0  6.46(10710) 2.06(10°9)  3.13 3.10(10°9) 1.13(10°8) 2

.73

Gt



Table 5 (Continued)

Energy Radius N, N N. /N E E E. /E
(moce) (mfp) ) (x]ioag) ' ’ (xiOﬁg)
6.0 1.0  9.29(1073) 3.68(10°1) 2.52 2.64(107°%) 2.21 1.19
3.0  2.14(1073) 4.98(107°)  4.30 7.76(1073) 2.99(107%) 2.60
5.0 3.84(10%) 6.74(1073)  5.70 1.54(1073) 4.04(107°) 3.82
8.0 2.68(107°) 3.35(1001)  7.99 1.18(10°1) 2.01(1073) 5.85
12.0 7.49(10 7) 6.14(10"6) 12.2 3.51(10 ) 3.69(10‘5) 9.53
16.0 2.11(10°9) 1.12(1077) 18.7  1.02(1077) 6.75(10°7) 15.1
20.0  5.94(10710) 2.06(10°9) 28.8  2.94(10-9) 1.24(1078) 23.8
8.0 1.0  8.15(1073) 3.68(1071) 2.22 2.65(1072) 2.94 .901
3.0 1.82(1067~) u.98(1o'2) 3.86 7.80(10‘3) 3.98(10‘1) 1.96
5.0  3.42(2077%) 6.74(1073)  5.08 1.51(1073) 5.39(1072) 2.80
8.0 2.31(107°) 3.35(10"7) 6.80 1.08(10" ") 2.68(1073) 4.03
12,0 6.04(10"7) 6.14(10°°)  9.82 2.94(107°) 4.92(107°) 5.98
16.0 ].55(10-8) 1.12(10°7) 13.8 7.74(1077) 9.00(10“7) 8.59
20.0  3.99(10°%9) 2.06(10™%) 19.4  2.01(1079) 1.65(10°°) 12.2

of
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DISCUSSION OF RESULTS

For the purpose of data investigation, the attenuation
calculations generated by the program were plotted and are
illustrated in Figures 8 through 15.

Consider the lighter materials first; namely, water and
iron. The number density ratios, Nl/NO’ are seen to decrease
with increasing source energy in both cases. Also, 1t can
be seen that the curves reach a maximum value in the range
of 3 to 8 mean free paths. For larger values of R, the value
of N1/N, is seen to decrease as R increases, the rate of
decrease being larger 1in the case of the lower source energy.

Similar conclusions may be reached concerning El/Eo
for water and iron; the only discrepancy being that the curves
of El/Eo are somewhat smoother, That is, El/Eo reaches 1ts
maximum value at larger values of R than did Nl/No’ and its
rate of decrease 1s somewhat smaller than in the case of
B/

The above conclusions may be aptly applied to the
heavier materials lead and uranium only for the lower source
energy cases, In the case of higher source energies, the
curves are seen to change shape drastically with increasing
source energy. For the largest value of the source energy,

namely 8 moc2

» Nl/N0 and El/Eo are seen to lncrease contin-
uously with increasing values of the parameter R. This

behavior for larger values of source energies in the case



Figure 8. Number density ratio of water as a funcgion
of sphere radius for 1, 2, 4, and 8 m_c
incident photons.
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Figure 9. Energy density ratio of water as a function
of sphere radius for 1, 2, 4 and 8 moc2
incident photons.
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Figure 10. Number density ratio of iron as a fgnction of
sphere radius for 1, 2, 4 and 8 m c< incident
photons.
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Figure 11l. Energy density ratio of iron as a funcEion
. of sphere radius for 1, 2, 4 and 8 m_c
incident photons.
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Figure 12. Number density ratio of lead as a functilon
of sphere radius for 1, 2, 4 and 8 m002
incident photons.
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Figure 13. Energy density ratio of lead as a func&ion
of sphere radius for 1, 2, 4 and 8 m e
incident photons.
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Figure 14. Number density ratio of uranium as a function
of sphere radius for 4, 4.5, 5, 5.5, 6 and

8 myc? incident photons.
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Flgure 15. Energy density ratio of uranium as a
function ofESphere radius for 4, 4.5, 5, 5.5,
6 and 8 m,c“ incldent photons.
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o

of the heavier material may be explalined qulte readlly by
examining the curves illustrated in Figure 16. The data for
these curves have been taken from U.S. Atomic Energy Commission
(16), and are presented in Table 6.

As is obvious from an investigation of the total linear
absorption coefflcient curves, the value of | reaches a
minimum in the cases of lead and uranium, but not in the
cases of water and iron, within the source energy range
under investigation. This 1is the general behavior of the
total linear absorption coefficient as a functlon of energy;
i.e., | reaches a minimum value and then increases with
increasing energy. Had the energy range been extended some-
what, , for 1lron and water would have also reached a minimum,
and similar curves for Nl/No and El/E0 would have been
produced for these materials. The conclusion to be drawn
from Figure 16 is that in the cases of lead and uranium,
ls seen to be almost constant over the energy range from 2 to
5 Mev, corresponding to the range from 4 to 10 mocg. This
constant behavior of ;, not found in the cases of water and
iron, 1s responsible for the behavior of Nl/NO and El/Eo in
the cases of lead and uranium in the energy range from 4
tol8 mocg.

Values of Nl/No and El/Eo for uranium have been calcu-
lated for intermediate source energies between 4 and 8 mocg.
An investigation of Figures 14 and 15 indicates that Nl/No

and El/E0 reach maximum values in the vieinity of 5.5 m002
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for large values of R. As the source energy is further
increased, however, these values are seen to decrease,
Finally, it should be mentioned that in all cases, the
value of El/Eo is found to be less than that for Nl/No' This
is to be expected since the energy of the scattered photon
must be less than that of the incident photon, from Eguation

5. Thus, since E' is less than E, and El = E'N; and EO = ENO,

E,/E, = E'N;/EN_ < N;/N_ . (59)

Table 6. Total linear absorption coefficients in cm2 for
photon energies in the range of 100 kev to 5 Mev

for HEO’ Fe, Pb and U
-1

Energ (em™ )
(Mev HEO Fe Pb U
5.0 0.0301 0.2460 0.4831 0.8340
4,0 0.0339 0.2594 0.4763 0.8228
3.0 0.0396 0.2837 0.4774 0.8322
2.0 0.0493 0.333 0.5182 0.9051
1.5 0.0575 0.3812 0.5806 1.025
1.0 0.0706 0.4677 s g 1.416
0.8 0.0786 0.5219 0.9480 1.780
0.6 0.0896 0.5989 1.293 2.543
0.5 0.0966 0.6508 1.644 3.291
0.4 0.106 0.7223 2.359 4,843
0.3 0.118 0.833 4,037 8.452
0.2 0.136 1.085 10.16 21.88
0:15 0.149 1.438 20.87 45.25
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Figure 16. The total linear absorption coefficient as a
function of photon energy.
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FURTHER APPLICATIONS

This investligation has only consldered the number
denslty ratios and the energy density ratlios of filrst order
scattering to zero order scattering for a varlety of
scattering media, lncident photon energies and sphere radil.
The possibllities of further research on this problem is
unlimited. Higher order scattering calculation would yield
a very good approximation to number bulld-up factors and
energy build-up factors for a varlety of materlals in finite
geometry. Also, this technlque of calculating the attenuation
of photons by matter could be appllied to layer type problems,
where the scattering medlum 1s a succession of concentric
spherical layers of different materials,

Finally, the method of successlve scattering may be
aptly applied to the attenuation of neutrons in matter.
Although this would involve very complex functions because
of- the characteristic nature of the scattering cross section

of the neutron, research in this area would be invaluable.
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APPENDIX: FLOW DIAGRAMS OF THE MAIN PROGRAM
AND THE SUBROUTINE



Figure 17. Flow dlagram of the maln program.



73

Read in parameters: source energies,
1'8, “O's, R's, p's, ros welghting
factors and pairs of data points for
the interpolation subroutine.

Calculate the natural logarithms
of the palrs of data points and
feed these results to the sub-
routine.

No

No

ffor all source

energiesj

Solved
for all
materials?

Calculate a, ha’ ' hyo

Call interpolation
subroutine and evaluate

9}

Evaluate and print out
El’ Eo’ El/Eo’ Nl’ N

I
Nl/ko

OJ

Yes R <« a

A-e < A!

Yes No

a= a-+h
STOP END a

>~'=>\'+h}I




Figure 18. Flow diagram of the Lagrange's interpolation
subroutine,
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SINGIN

(ZX,XK,Y,C,L)

ZXJ = ZX(J)
A=(XK-ZXJ)/(ZXI-ZXJ

P = PxA




	1-1-1967
	First order scattering of photons in spherical geometry
	Ervin Thomas Boulette
	Recommended Citation


	First order scattering of photons in spherical geometry 

